A Review of Food Accessibility Measures and Decision Support Models

Franseira Maldonado¹, Laila Cure Ph.D.¹, Aaron Bowen⁶, Nikki Keene Woods Ph.D.², Ajita Rattani Ph.D.³, Twyla Hill Ph.D.⁴, Rhonda Lewis Ph.D.⁵, Janet Twomey Ph.D.¹ ¹Industrial, Systems and Manufacturing Engineering, ²Public Health Sciences, ³Computer Science, ⁴Sociology, ⁵Psychology, ⁶University Libraries

INTRODUCTION

Background

- Diet was reported to cause 11 million deaths in 2017.¹
- The food environment has been found to be a key factor in individuals' diet.²
- Around 23.5 million people live in **food deserts**, i.e., areas with low access to appropriate food.³
 - → Malnourishment

→ "Substitution effect": inexpensive, energy-dense foods replace healthier foods ⁴,

→Increasing Body Mass Index (BMI)

 \rightarrow Increases chances to develop chronic diseases. ⁵

Figure 1: Food Deserts in Sedgwick County ⁶

- Interest in food access research has increased over time.
- Developing methods to measure food accessibility
 - Simple measure used by USDA
 - Many measures proposed by researchers
- Assessing disparities
- Evaluating novel policies
- Industrial and Systems Engineers use results of assessments and data to support actionable decisions.

OBJECTIVES

To review published articles involving measures or models of food accessibility to identify:

- Actionable decisions to improve food accessibility that have been studied through mathematical models
- Metrics and models used to measure food accessibility

METHODS

- Systematic review
- Databases: PubMed, CINAHL, ProQuest Nursing & Allied Health Source, Consumer Health Complete, Scopus
- Keywords: {models, statistical} AND {food access, food proximity, food desert, food insufficiency, food insecurity, food security, supermarkets }

RESULTS

Search Results

- Records from database: 81; records from other sources: 23; duplicates: 6; screened: 98; excluded after review: 32; included: 54.
- Reasons for exclusion: qualitative discussion about food desert terminology, does not include quantitative accessibility measure, focus on act of eating, focus on food acceptance/choice, focus on nutrition, among others.

Notation:	Accessibility Meas	Accessibility Measures	
Parameters defined by analysts: δ: radius of analysis around a consumer	Table 1: Methods to Assess Food Accessibility		
τ: time of the day \mathcal{F} : factors other than spatial accessibility ω_f : weight of factor <i>f</i> ∈ \mathcal{F}	Measure name	Equation	
 <u>Consumers and food outlets:</u> <i>Set of consumer points, indexed by i</i> <i>C</i>: set of classes of food outlets (healthy/unhealthy, large/small, free/paid, brand, etc.), indexed by c 	Nearest outlet Diversity y,	$A1 = \min_{j \in \mathcal{J}} d_{ij} = d_{i[1]}$ $A7_i$ $= \frac{A1_i \mathcal{J}_{brand 1} + A1_i \mathcal{J}_{brand 2} + \dots + A1_i \mathcal{J}_{brand r}}{3}$	
\mathcal{J} : set of food outlets, indexed by j. $\mathcal{J}_c \subset \mathcal{J}$ is the subset of food outlets of type/class c \mathcal{M} : set of transportation modes considered, indexed b	et Inaccessibility measure y	$A14_i = \sum_{i \in J} d_{i[1]} r_i p_i$	
m. G: Geographical movement data	Dichotomous	$A2_i = \begin{cases} 1 & \text{if } A1_i \le \delta \\ 0 & \text{otherwise} \end{cases}$	
Parameters obtained from data: d_{ij} : measure of distance between points i and j.	Efficient Access to food retailers at time t	$A13_{it} = \bigcup_{j \in \mathcal{J}} \pi \delta^2 s_{ij}$	
s_{ij} . Unlary parameter, $u_{ij} \le o(s_{ij} - 1)$ if not $(s_{ij} - 0)$ r_i : probability of consumer point not having a vehicle p_i : size of the consumer point i	n-1-n measure	$A4_i = \sum_{m \in \mathcal{M}} \sum_{i' \in \mathcal{I} \setminus \{i\}} p_{ii'm} (1 - A2_{im}) (1 - A2_{i'm})$	
p_{ij} : subpopulation that commutes between locations i and j h_j : binary indicator of healthy options ($h_j = 1$) or no	ot MRFEI	$A8_i = \frac{\sum_{j \in \mathcal{J}} s_{ij} h_j}{A3_i}$	
$(h_j = 0)$ o _{jt} : binary indicator of a food outlet being open at time t	Density of the 3 nearest outlets	$A9_i = d_{i[1]} + d_{i[2]} + d_{i[3]}$	
y_{fi} : value of factor f corresponding to consumer point i	Density	$A3_i = \sum_{j \in \mathcal{J}} s_{ij}$	
Decisions and Models Mathematical Optimization	GIS-based MCDM	$A6_i = \omega_0 A2_i + \sum_{f \in \mathcal{F}} w_f y_{fi}$	
Optimal location of food outlets Mobile markets ⁷ Independent grocers ⁸	n-n-n measure	$A5_{i} = \frac{\sum_{m \in \mathcal{M}} \sum_{i' \in \mathcal{I} \setminus \{i\}} p_{ii'm} S(i, i', m)}{\sum_{m \in \mathcal{M}} \sum_{i' \in \mathcal{I} \setminus \{i\}} p_{ii'm}}$	
Computer Simulation	Potential accessibility index	$A10_i = \sum_{j \in \mathcal{J}} f(d_{ij})$	
Evaluating potential impact of behavior-changing policies	Commuter potential accessibility	$A11_{ii'} = (A10_i + A10_{i'}) \cdot \left(1 - \gamma(d_{ii'})\right)$	
Ensuring that consumers use farmers markets as the preferredChanging some infrequent shoppers into weeklyEnsuring all convenience stores sell fruits and	Network-based TGDE	$A12_i = \sum_{j \in \mathcal{J}} \mathcal{G} ^{-1} \sum_{g \in \mathcal{G}} \hat{f}(x_{ij})' s_{jj}, O_j$	
the preferred shopping location when availabletransportation support, weekly SNAP benefits)vegetables (e.g., incentives) 9	Super Market Interaction Potential	$A15_{i} = \sum_{i'} p_{ii'} \frac{\sum_{j=[1]}^{[5]} SMIP_{ii'j}}{n}$	

Mathematical Optimization					
Optimal location of food outlets					
Mobile markets ⁷		Indep	Independent grocers ⁸		
Computer Simulation					
Evaluating potential impact of behavior-changing policies					
Ensuring that consumers use farmers markets as the preferred shopping location when available	Changing some infrequent shoppers into weekly shoppers (e.g., transportation support, weekly SNAP benefits)		Ensuring all convenience stores sell fruits and vegetables (e.g., incentives) ⁹	N S Iı	
Increasing the number of bus routes	Impropede pede infrastru increase v to v	oving strian ucture to villingness valk	Increasing the number of grocery stores ¹⁰	•	

Consumer's perception of food access has also been examined. Surveys are performed asking qualitative questions about their personal experience with food access.

Conclusions

- Food security has many dimensions, one of which is accessibility.
- There are documented disparities in food accessibility • Food accessibility studies do not include preference of
- consumers (appropriateness of food resources) • Food accessibility research focuses most heavily on assessment and measurement methods
- There are different ways in which accessibility can be measured • The most appropriate depends on the use of the resulting information
- Most available data and assessments are at the census tract level, which generalizes individual behaviors • Assessments and models reflecting individuals' behaviors and preferences are needed.
- limited.
- Published research involving explicit decision-support is Focused only on the accessibility objective
- Generalizes individuals over geographical areas
- Despite the number of studies, food security, and food accessibility, is still a problem in most places.

Opportunities

- **Related to models reviewed:**
- techniques to support facility location decisions that consider accessibility, along with other organizational, and community objectives
- Grocers and other food vendors can use existing modeling
- Policy-makers can collaborate with system modelers to evaluate the potential effects of policies. • Rule out non-promising solutions

 - Identify most promising areas to further explore

Other opportunities:

- Identify other resource allocation decisions commonly made by grocers, communities, and policy makers that can be solved through data-driven and systems modeling techniques.
- Explore the impact of aggregated decisions on individuals and how individual-based data can be used in better support higher-level decisions.

- 1. Hobbs, M., Mackenbach, J. D., Wiki, J., Marek, L., McLeod, G. F. H., & Boden, J. M. (2021). Investigating change in the food environment over 10 years in urban New Zealand: A longitudinal and nationwide geospatial study. Social Science and Medicine, 269. https://doi.org/10.1016/j.socscimed.2020.113522
- Study, UK. International Journal of Health Geographics, 16(1). https://doi.org/10.1186/s12942-017-0106-8
- 2. Maguire, E. R., Burgoine, T., Penney, T. L., Forouhi, N. G., & Monsivais, P. (2017). Does exposure to the food environment differ by socioeconomic position? Comparing area-based and person-centred metrics in the Fenland 3. Bao, K. Y., & Tong, D. (2017). The Effects of Spatial Scale and Aggregation on Food Access Assessment: A Case of Tucson, Arizona. Professional Geographer, 69(3), 337–347. Study https://doi.org/10.1080/00330124.2016.1252271
- 4. Cheung, H. C., Shen, A., Oo, S., Tilahun, H., Cohen, M. J., & Berkowitz, S. A. (2015). Food insecurity and body mass index: A longitudinal mixed methods study, Chelsea, Massachusetts, 2009-2013. Preventing Chronic Disease, *12*(8). https://doi.org/10.5888/pcd12.150001
- Perspectives and Policy, 35(1), 106–124. https://doi.org/10.1093/aepp/pps035
- 5. Alviola, P. A., Nayga, R. M., & Thomsen, M. (2013). Food deserts and childhood obesity. Applied Economic 6. USDA Economic Research Service, ESRI. For more information: https://www.ers.usda.gov/data-products/food-
- access-research-atlas/documentation 7. Widener, M.J., Metcalf, S.S. & Bar-Yam, Y. Developing a Mobile Produce Distribution System for Low-Income
- Urban Residents in Food Deserts. J Urban Health 89, 733-745 (2012). https://doi.org/10.1007/s11524-012-9677-7 8. Yang Bao, K., Tong, D., Plane, D. A., & Buechler, S. (2020). Urban Food Accessibility and Diversity: Exploring the Role of Small Non-Chain Grocers.
- 9. Widener, M. J., Metcalf, S. S., & Bar-Yam, Y. (2012). Developing a mobile produce distribution system for lowincome urban residents in food deserts. Journal of Urban Health, 89(5), 733-745. https://doi.org/10.1007/s11524-
- <u>012-9677-7</u>

DISCUSSION AND FUTURE RESEARCH

REFERENCES

10. Abel, K. C., & Faust, K. M. (2020). Modeling complex human systems: An adaptable framework of urban food deserts. Sustainable Cities and Society, 52. https://doi.org/10.1016/j.scs.2019.101795